Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 174: 113834, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32027884

RESUMO

Acid-sensing ion channels (ASICs) are voltage-independent cation channels that detect decreases in extracellular pH. Dysregulation of ASICs underpins a number of pathologies. Of particular interest is ASIC3, which is recognised as a key sensor of acid-induced pain and is important in the establishment of pain arising from inflammatory conditions, such as rheumatoid arthritis. Thus, the identification of new ASIC3 modulators and the mechanistic understanding of how these compounds modulate ASIC3 could be important for the development of new strategies to counteract the detrimental effects of dysregulated ASIC3 activity in inflammation. Here, we report the identification of novel ASIC3 modulators based on the ASIC3 agonist, 2-guanidine-4-methylquinazoline (GMQ). Through a GMQ-guided in silico screening of Food and Drug administration (FDA)-approved drugs, 5 compounds were selected and tested for their modulation of rat ASIC3 (rASIC3) using whole-cell patch-clamp electrophysiology. Of the chosen drugs, guanabenz (GBZ), an α2-adrenoceptor agonist, produced similar effects to GMQ on rASIC3, activating the channel at physiological pH (pH 7.4) and potentiating its response to mild acidic (pH 7) stimuli. Sephin1, a GBZ derivative that lacks α2-adrenoceptor activity, has been proposed to act as a selective inhibitor of a regulatory subunit of the stress-induced protein phosphatase 1 (PPP1R15A) with promising therapeutic potential for the treatment of multiple sclerosis. However, we found that like GBZ, sephin1 activates rASIC3 at pH 7.4 and potentiates its response to acidic stimulation (pH 7), i.e. sephin1 is a novel modulator of rASIC3. Furthermore, docking experiments showed that, like GMQ, GBZ and sephin1 likely interact with the nonproton ligand sensor domain of rASIC3. Overall, these data demonstrate the utility of computational analysis for identifying novel ASIC3 modulators, which can be validated with electrophysiological analysis and may lead to the development of better compounds for targeting ASIC3 in the treatment of inflammatory conditions.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Simulação por Computador , Guanabenzo/análogos & derivados , Guanabenzo/metabolismo , Guanidinas/metabolismo , Quinazolinas/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Guanabenzo/química , Guanabenzo/farmacologia , Guanidinas/química , Guanidinas/farmacologia , Estrutura Secundária de Proteína , Quinazolinas/química , Quinazolinas/farmacologia
2.
ACS Infect Dis ; 5(12): 2039-2046, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31612700

RESUMO

Brain-eating amoebae cause devastating infections in the central nervous system of humans, resulting in a mortality rate of 95%. There are limited effective therapeutic options available clinically for treating granulomatous amoebic encephalitis and primary amoebic meningoencephalitis caused by Acanthamoeba castellanii (A. castellanii) and Naegleria fowleri (N. fowleri), respectively. Here, we report for the first time that guanabenz conjugated to gold and silver nanoparticles has significant antiamoebic activity against both A. castellanii and N. fowleri. Gold and silver conjugated guanabenz nanoparticles were synthesized by the one-phase reduction method and were characterized by ultraviolet-visible spectrophotometry and atomic force microscopy. Both metals were facilely stabilized by the coating of guanabenz, which was examined by surface plasmon resonance determination. The average size of gold nanoconjugated guanabenz was found to be 60 nm, whereas silver nanoparticles were produced in a larger size distribution with the average diameter of around 100 nm. Guanabenz and its noble metal nanoconjugates exhibited potent antiamoebic effects in the range of 2.5 to 100 µM against both amoebae. Nanoparticle conjugation enhanced the antiamoebic effects of guanabenz, as more potent activity was observed at a lower effective concentration (2.5 and 5 µM) compared to the drug alone. Moreover, encystation and excystation assays revealed that guanabenz inhibits the interconversion between the trophozoite and cyst forms of A. castellanii. Cysticdal effects against N. fowleri were also observed. Notably, pretreatment of A. castellanii with guanabenz and its nanoconjugates exhibited a significant reduction in the host cell cytopathogenicity from 65% to 38% and 2% in case of gold and silver nanoconjugates, respectively. Moreover, the cytotoxic evaluation of guanabenz and its nanoconjugates revealed negligible cytotoxicity against human cells. Guanabenz is already approved for hypertension and crosses the blood-brain barrier; the results of our current study suggest that guanabenz and its conjugated gold and silver nanoparticles can be repurposed as a potential drug for treating brain-eating amoebic infections.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Ouro/química , Guanabenzo/farmacologia , Naegleria fowleri/efeitos dos fármacos , Prata/química , Acanthamoeba castellanii/crescimento & desenvolvimento , Amebicidas/química , Amebicidas/farmacologia , Linhagem Celular , Reposicionamento de Medicamentos , Guanabenzo/química , Células HeLa , Humanos , Nanopartículas Metálicas , Microscopia de Força Atômica , Estrutura Molecular , Naegleria fowleri/crescimento & desenvolvimento , Nanoconjugados/química , Tamanho da Partícula , Trofozoítos/efeitos dos fármacos
3.
Nucleic Acids Res ; 43(18): 8664-72, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26400165

RESUMO

One of the major obstacles to the pharmaceutical success of oligonucleotide therapeutics (ONTs) is efficient delivery from the point of injection to the intracellular setting where functional gene silencing occurs. In particular, a significant fraction of internalized ONTs are nonproductively sequestered in endo-lysosomal compartments. Here, we describe a two-step, robust assay for high-throughput de novo detection of small bioactive molecules that enhance cellular uptake, endosomal escape, and efficacy of ONTs. Using this assay, we screened the LOPAC (Sigma-Aldrich) Library of Pharmacologically Active Compounds and discovered that Guanabenz acetate (Wytensin™), an FDA-approved drug formerly used as an antihypertensive agent, is capable of markedly increasing the cellular internalization and target mRNA silencing of hydrophobically modified siRNAs (hsiRNAs), yielding a ∼100-fold decrease in hsiRNA IC50 (from 132 nM to 2.4 nM). This is one of the first descriptions of a high-throughput small-molecule screen to identify novel chemistries that specifically enhance siRNA intracellular efficacy, and can be applied toward expansion of the chemical diversity of ONTs.


Assuntos
Guanabenzo/farmacologia , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Transporte Biológico , Guanabenzo/química , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Interações Hidrofóbicas e Hidrofílicas , RNA Interferente Pequeno/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
4.
ACS Chem Neurosci ; 5(10): 1075-82, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25244284

RESUMO

Guanabenz (GA) is an orally active α2-adrenergic agonist that has been used for many years for the treatment of hypertension. We recently described that GA is also active against both yeast and mammalian prions in an α2-adrenergic receptor-independent manner. These data suggest that this side-activity of GA could be explored for the treatment of prion-based diseases and other amyloid-based disorders. In this perspective, the potent antihypertensive activity of GA happens to be an annoying side-effect that could limit its use. In order to get rid of GA agonist activity at α2-adrenergic receptors, we performed a structure-activity relationship study around GA based on changes of the chlorine positions on the benzene moiety and then on the modifications of the guanidine group. Hence, we identified the two derivatives 6 and 7 that still possess a potent antiprion activity but were totally devoid of any agonist activity at α2-adrenergic receptors. Similarly to GA, 6 and 7 were also able to inhibit the protein folding activity of the ribosome (PFAR) which has been suggested to be involved in prion appearance/maintenance. Therefore, these two GA derivatives are worth being considered as drug candidates.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 2/farmacologia , Guanabenzo/análogos & derivados , Guanabenzo/farmacologia , Fármacos Neuroprotetores/farmacologia , Príons/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 2/química , Animais , Células CHO , Bovinos , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Cricetulus , Escherichia coli , Guanabenzo/química , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estrutura Molecular , Fármacos Neuroprotetores/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/fisiopatologia , Dobramento de Proteína/efeitos dos fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Relação Estrutura-Atividade , Técnicas de Cultura de Tecidos , Leveduras
5.
Biochimie ; 93(6): 1047-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21396977

RESUMO

The ribosome, the protein synthesis machinery of the cell, has also been implicated in protein folding. This activity resides within the domain V of the main RNA component of the large subunit of the ribosome. It has been shown that two antiprion drugs 6-aminophenanthridine (6AP) and Guanabenz (GA) bind to the ribosomal RNA and inhibit specifically the protein folding activity of the ribosome. Here, we have characterized with biochemical experiments, the mode of inhibition of these two drugs using ribosomes or ribosomal components active in protein folding (referred to as 'ribosomal folding modulators' or RFMs) from both bacteria Escherichia coli and yeast Saccharomyces cerevisiae, and human carbonic anhydrase (HCA) as a sample protein. Our results indicate that 6AP and GA inhibit the protein folding activity of the ribosome by competition with the unfolded protein for binding to the ribosome. As a result, the yield of the refolded protein decreases, but the rate of its refolding remains unaffected. Further, 6AP- and GA mediated inhibition of RFM mediated refolding can be reversed by the addition of RFMs in excess. We also demonstrate with delayed addition of the ribosome and the antiprion drugs that there is a short time-span in the range of seconds within which the ribosome interacts with the unfolded protein. Thus we conclude that the protein folding activity of the ribosome is conserved from bacteria to eukaryotes and most likely the substrate for RFMs is an early refolding state of the target protein.


Assuntos
Anidrases Carbônicas/química , Proteínas de Escherichia coli/química , Guanabenzo/química , Fenantridinas/química , Príons/antagonistas & inibidores , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/química , Humanos , Dobramento de Proteína
6.
Bioconjug Chem ; 21(2): 279-88, 2010 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-20092293

RESUMO

The synthesis of affinity matrices for 6-aminophenanthridine (6AP) and 2,6-dichlorobenzylidenaminoguanidine (Guanabenz, GA), two unrelated prion inhibitors, is described. In both cases, the same simple spacer, epsilon-aminocaproylaminopentanol, was introduced by a Mitsunobu reaction and the choice of the anchoring position of the linker was determined by the study of the residual antiprion activity of the corresponding 6AP or GA conjugates. Very recently, these two affinity matrices were used for chromatography assays leading to the identification of ribosome (via the rRNA) as a common target of these two antiprion drugs. Here, we show, using competition experiments with Quinacrine (QC) and Chlorpromazine (CPZ), two other antiprion drugs, that QC, but not CPZ, may also directly target the rRNA.


Assuntos
Cromatografia de Afinidade , Guanabenzo/síntese química , Guanabenzo/metabolismo , Fenantridinas/síntese química , Fenantridinas/metabolismo , Príons/antagonistas & inibidores , Ligação Competitiva , Clorpromazina/metabolismo , Guanabenzo/química , Guanabenzo/farmacologia , Microesferas , Fenantridinas/química , Fenantridinas/farmacologia , Quinacrina/metabolismo , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Sefarose/química
7.
Arch Physiol Biochem ; 111(2): 159-66, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12919003

RESUMO

The imidazoline-type compound, MPV-1743, has been found to activate nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of the genetically obese Zucker rats. The regulation of NST in BAT is linked to the catecholamine metabolism, and the imidazoline I2-binding sites have been found on the monoamine oxidase, a catecholamine metabolising enzyme. In this study, the I2-binding sites of hamster BAT have been characterised using a receptor binding assay with 3H-idazoxan as a radioligand, and the interaction of MPV-1743 with these I2-binding sites has been studied using the enantiomers of MPV 1743, that is, MPV 2088 and MPV 2089. Cirazoline was used to determine the specific binding of 3H-idazoxan to the imidazoline I2-binding sites. Rauwolscine was added in the 3H-idazoxan binding assay in order to inhibit any binding to potential alpha2-adrenergic sites. In the presence of rauwolscine mask 3H-Idazoxan labelled a population of non-adrenergic binding sites expressing the properties of the imidazoline I2b-receptor subtype similar to that found in the rat liver (cirazoline >> guanabenz = amiloride >> clonidine). The binding of 3H-idazoxan to the I2b-binding sites could be displaced by the imidazole compounds with the following affinities: detomidine (KiHigh 9.2 nM; KiLow 3200 nM), MPV-2088 (KiHigh 19 nM; IKiLow 760 nM) and MPV-2089 (KiHigh 190 nM; KiLow 1300 nM), atipamezole (3500 nM) and dexmedetomidine (Ki 8400 nM). These results have shown that the hamster BAT contains the imidazoline I2b-binding sites with heterogeneous binding properties for some test compounds. In addition, the enantiomers of MPV 1743, that is, MPV 2088 and MPV 2089, had high affinity to these BAT imidazoline I2b-binding sites. Therefore, it is suggested that the regulation of NST in the hamster BAT may be an attractive model to study the role of imidazoline I2b-binding sites.


Assuntos
Tecido Adiposo Marrom/química , Tecido Adiposo Marrom/metabolismo , Idazoxano/farmacocinética , Receptores de Droga/química , Receptores de Droga/metabolismo , Amilorida/química , Amilorida/farmacocinética , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Clonidina/química , Clonidina/farmacocinética , Técnicas de Cultura , Relação Dose-Resposta a Droga , Guanabenzo/química , Guanabenzo/farmacocinética , Humanos , Idazoxano/química , Imidazóis/química , Imidazóis/farmacocinética , Receptores de Imidazolinas , Fígado/química , Fígado/metabolismo , Neoplasias Mamárias Animais , Camundongos , Ligação Proteica , Ratos , Especificidade da Espécie , Ioimbina/química , Ioimbina/farmacocinética
9.
Chem Res Toxicol ; 9(4): 682-8, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8831810

RESUMO

The N-reduction of the centrally acting alpha 2-adrenoreceptor agonist guanoxabenz (Benzérial), an N-hydroxyamidinohydrazone, to the amidinohydrazone guanabenz (Wytensin, Hipten, Rexitene) by microsomal fractions from rabbits, pigs and humans has been detected in vitro. The conversion rates with rabbit microsomal fractions were markedly slower than those in the cases of fractions from humans and pigs. It was also possible to demonstrate the N-oxidation of guanabenz to guanoxabenz by the use of microsomal fractions from rabbits, pigs, and humans. Furthermore, the oxidation was also observed in reconstituted systems in the presence of enriched cytochrome P450 fractions, purified isoenzyme P450 2C3, and heterologously expressed P450 2C3 of the subforms 6 beta H and 6 beta L. The analyses were performed with a newly developed HPLC technique and were confirmed by LC-MS methods. The kinetic parameters determined for the metabolic cycle (bioreversible reactions) are indicative of a predominance of the reduction of guanoxabenz to guanabenz in vivo. Accordingly, guanoxabenz in part constitutes a prodrug of guanabenz. Examination of guanabenz and guanoxabenz for mutagenicity by means of the Ames test revealed that guanoxabenz has pronounced mutagenic effects in the strains TA 98 and TA 1537. Guanabenz did not exhibit mutagenicity so that the N-reduction of guanoxabenz has significance in terms of detoxification.


Assuntos
Agonistas alfa-Adrenérgicos/metabolismo , Anti-Hipertensivos/metabolismo , Guanabenzo/análogos & derivados , Guanabenzo/metabolismo , Microssomos Hepáticos/enzimologia , Agonistas alfa-Adrenérgicos/química , Agonistas alfa-Adrenérgicos/toxicidade , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/toxicidade , Cromatografia Líquida de Alta Pressão , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Guanabenzo/química , Guanabenzo/toxicidade , Humanos , Hidroxilação , Inativação Metabólica , Masculino , Espectrometria de Massas , Testes de Mutagenicidade , NAD/metabolismo , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Coelhos , Espectrofotometria Ultravioleta , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...